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Abstract—It has been recently shown that, for non-orthogonal 
space-time block code (STBC), the multiple-input multiple-
output (MIMO) maximum-likelihood (ML) metric can also be 
decoupled into single-input single-output (SISO) ML metrics for 
decoding simplification just as for orthogonal STBC. In this 
work, we utilized the decoupled metrics of a non-orthogonal 
STBC to derive the symbol error rate (SER) in correlative 
fading channels and show that, when the non-orthogonal code is 
generated by converting an orthogonal code using proper 
precoding, the conversion will improve the SER performance 
when the MIMO channels are correlated. 

Keywords - space-time block code, MIMO, maximum-
likelihood decoding, corrrelative fading channels 

I. INTRODUCTION 
DUE to the orthogonal structure of the orthogonal STBC, the 
decoding of data symbols can be made simplified by 
decoupling the MIMO ML metric into separate SISO ML 
metrics [1]-[3]. However, recently, it is found that non-
orthogonal STBC can also be decoded by exactly the same 
simple manner [4]. This means decoupled ML decoding is 
not the prerogative of the orthogonal STBC. Both non-
orthogonal and orthogonal STBCs belong to the class of 
linear STBCs [2], [4] and new codes for both are yet to be 
discovered, though more attention has so far been paid to the 
design of orthogonal STBCs [1], [5]-[7]. A non-orthogonal 
STBC may be derived from an orthogonal STBC by proper 
precoding to achieve minimum SER for correlative fading 
communications [8]. Since minimum error rate is the 
ultimate performance measure for data communications, we 
are motivated to investigate the SER performance of non-
orthogonal STBCs so formed for correlative fading channels. 
  In this work, we shall derive symbol error rate (SER) 
expression for a non-orthogonal STBC over correlative 
fading channel models. This non-orthogonal code has been 

given in [8] and falls into a class of linear STBC specified in 
[4]. Comparison will be made between the SER performance 
for an orthogonal STBC and the corresponding non-
orthogonal STBC derived from that orthogonal STBC. We 
will assume QAM signaling over Rayleigh fading channels 
in our SER derivations.  
  The rest of the paper is organized as follows: Section II 
briefly reviews the class of linear STBC introduced in [4]. 
Section III derives the SER of a non-orthogonal STBC for 
M-QAM transmission over correlative fading channels. Then, 
Section IV presents numerical examples including 
performance comparisons between orthogonal and non-
orthogonal codes. Finally, Section V draws conclusions.  
 

II. NON-ORTHOGONAL STBC 
We consider a wireless communication system with P 

transmit antennas and Q receive antennas employing linear 
STBC transmission. Let the equivalent baseband path gain 
from the pth transmit antenna to qth receive antenna be qph , , 

Pp ,...,2,1= , Qq ,...,2,1= . 
A linear STBC transmission can be described by a NP×  

code matrix as [2] 
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Here, png  is the codeword transmitted from the pth transmit 

antenna at the nth time slot, Nn ,...,2,1= , with N time 

slots constituting a block. Each codeword png  is a linear 
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combination of information symbols { kx } and their 

conjugates { ∗
kx }, Kk ,...,2,1= , NK ≤ . In other words, 

K information symbols over a block of N time slots are 
chosen for transmission through P transmit antennas. Thus, 
the code rate is NK / . For this work, since we will consider 
M-ary QAM transmission, the K symbols of { kx } used for a 
block are selected from M possible constellation points. 
Different block may select different K symbols from the 
constellation. The code matrix G  can also be expressed 
alternatively by another two NP ×  code matrices kA  and 

kB  as [2]  

        ∑
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k
kkskkc jxx
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)( BAG ,                                    (2) 

where ]Re[ kkc xx = and ]Im[ kks xx = , with ]Re[⋅  and 

]Im[⋅  respectively denoting the real and imaginary part. 

The received signal vector T
qNqqq rrr ],,,[ ,,2,1=r , T 

denoting transposition, at the q th receive antenna over the 
block of N  time slots is given by 
        qq

T
qqq nhGnyr +=+= ,                               (3) 

where T
qNqqq yyy ],,,[ ,,2,1=y  is the noise-free received 

signal vector, T
qNqqq nnn ],,,[ ,,2,1=n  is the zero-mean 

additive white Gaussian noise (AWGN) vector with 
covariance matrix  Nn I2σ , with NI  being the NN ×  

identity matrix , and T
qPqqq hhh ],,,[ ,,2,1=h  is the 

channel gain vector for the q th receive antenna. For (3), we 

shall assume that qh remains constant over one block of N 
time slots (quasi-static fading). 
  The class of the linear STBC to be discussed here as given 
in [4] will possess the following properties: for 

Kk ,...,2,1= , Ki ,...,2,1= , and ki ≠  
H
ki

H
ik AAAA −= ,                                       (4a) 

H
ki

H
ik BBBB −= ,                                        (4b) 

H
ik

H
ki BAAB = ,                                          (4c) 

where H denotes Hermitian transposition. The code class 
given by (4) is more general than the amicable orthogonal 
design (AOD) defined in [2]. Some non-orthogonal codes 
that do fall into the class given by (4) have appeared recently 
in the literature [8], [9] and we shall later use one of these 
non-orthogonal codes for SER performance demonstrations. 
  In [4], it is shown that a linear STBC satisfying (4) can be 
decoded by separable ML metrics (decoupled from the 
general ML metric) for each complex data symbol. 
Moreover, the individual metric can further be decomposed 
into two quadrature metrics, one for the real part of the data 

symbol and the other for the imaginary part. For square M-
QAM signaling, this decomposition would further reduce the 

computation complexity from order )(MΟ  to )( MΟ . 
The two quadature metrics are given as 
        2

1,1,, )( kckkkcML xRD ′−′= λ ,                                   (5a) 

        2
2,2,, )( kskkksML xRD ′−′= λ .                                  (5b) 

The mathematical symbols in (5) are illustrated below. 
  The kth complex data symbol is kskck jxxx += . Define  

        2
ka ∑∑

==
==

Q

q
qk

Q

q
q

T
k

1

2
,

2

1
|||||||| ahA ,                       (6a) 

        2
kb 2

1
||||∑

=
=

Q

q
q

T
k hB ∑

=
=

Q

q
qk

1

2
, |||| b ,                    (6b) 

        ∑
=

−=
Q

q
q

H
kk

H
kk

H
qk jc

1

*)(2 hBAABh ,                (6c) 

        ∑
=

+=
Q

q

H
q

T
k

H
qq

T
k

H
qkR

1
1, ])([

2
1 hArhAr ,             (6d) 

        ∑
=

−=
Q

q

H
q

T
k

H
qq

T
k

H
qk

jR
1

2, ])([
2

hBrhBr .              (6e) 

The first three quantities are all real positive [4]. Let 1,kλ  and 

2,kλ  be the two eigenvalues of the matrix 
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where kU  is the 22×  unitary matrix whose columns 
consist of orthonormal eigenvectors respectively 
corresponding to 2,1, , kk λλ . The set of quadrature 

components of the data symbol and the set ( 2,1, , kk RR ) are 
then transformed into new sets by  
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III.  SER ANALYSIS FOR A NON-ORTHOGONAL STBC 

  We will take a non-orthogonal STBC given in [8] using M-
QAM signaling over correlative fading channels. The code 
given in [8] satisfies all the conditions of (4) but with some 
relaxations, viz., H

kk
H
kk BBAA =  (This does not imply 

kk BA = ) and 0BAAB =− H
kk

H
kk . With the 

relaxations, we easily find from (6) that 0=kc , 
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22
1, kkk ba ==λ  (this does not imply qkqk ,, ba =  either), 

and 2IU =k . Then (5) becomes  

        2
1,, )( kckkkcML xRD λ−= ,                                     (9a) 

        2
2,, )( kskkksML xRD λ−= ,                                    (9b) 

where 2,1, kkk λλλ == . In light of (9a) and (9b), we can 
picture the system as formed by equivalent channels with 
virtual channel gains kλ  and virtual noisy received signals 

2,1, , kk RR  respectively for real and imaginary signal 

components kskc xx , . Then, (9a) and (9b) are nothing more 
than just the minimum distance metrics. Thus we can 
respectively regard kckkkc xRn λ−= 1,  and 

kskkks xRn λ−= 2,  as the real and imaginary parts of a 
virtual complex noise. In [4], it is shown that  
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and these two noise components are identical Gaussian RV’s 
with zero mean and variance 2/2222

nkkskc a σσσ == .  
In (6a) and (6b), we can consider 

T
qPkqkqkqkq

T
k aaa ] [ ,,,2,,1,, == ahA  and  =q

T
k hB  

 [ ,1,, qkqk b=b T
qPkqk bb ],,,2, as the equivalent virtual 

channel vectors for the qth receive antenna as seen by kcx  

and ksx  respectively.  If the original physical channels 

{ qph , } have complex Gaussian gains, then { qpka ,, } and 

{ qpkb ,, } will be correlated complex Gaussian gains as both 

qk ,a  and qk ,b  are linear transformations of qh .  

  For square M-QAM signaling over fading channels, kcx  

and ksx  each randomly takes the value from the set 

{ MmdMm c ,...,2,1  ,)12( =−− } with equal 

probability M/1 , where d is a constant that can be used 
for power control. The average transmitted energies of kcx  

and ksx  are given by 
g

d
dMEE avsavc 23

1 2
2

,, =−== , 

where 
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3
−
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M

g . Using (9), the received signal 

energies are =avck Ea ,
4

avsk Eb ,
4 . Therefore, the total 

received signal-to-noise ratios (SNRs) after the ML linear 
processor are given by 
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where we have stacked qpka ,,  and qpkb ,,  respectively into 

lka ,  and lkb ,  by letting PQL = , and defined 
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quadrature branch SNRs. This is equivalent to redefining 
T

Lkkkk aaa ],,,[ ,2,1,=a  and =kb  

,,,[ 2,1, kk bb T
Lkb ],  as the new virtual channel vectors 

respectively seen by kcx  and ksx . 

  For fixed set of { lkc,γ } and { lks,γ }, the conditional SER 
for square M-QAM can be calculated using the moment 
generating function (MGF)-based approach as [10] 
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where we have utilized the following identities [10] 
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The overall average SER for the kth data symbol is 
obtained by averaging (12) over kγ  as 
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  We now need to decorrelate the channels 
T

Lkkkk aaa ],,,[ ,2,1,=a  and ,,,[ 2,1, kkk bb=b T
Lkb ],  

to facilitate further computation. The covariance matrices of 

ka and kb can be unitary diagonalized so that a new pair of 

channel vectors k
H
kck aUa =′ T

Lkkk aaa ],,,[ ,2,1, ′′′=  and 

k
H
ksk bUb =′ ,,,[ 2,1, kk bb ′′= T

Lkb ],′  can be obtained, 

where kcU  and ksU  are respectively the unitary matrices 

that diagonalize the covariance matrices of ka and kb [15]. 

Now the components of ka′ and kb′ , viz., { lka ,′ } and 

{ lkb ,′ } are uncorrelated. As a result, the new equivalent 

branch SNRs { 2
,

2
,,,, /||2'' navclklkslkclk Ea σγγγ ′==′= } 

are uncorrelated [11] and independent if the original physical 
channels { qph , } are Gaussian. Thus, the MGF of the 

combined SNRs ∑
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l
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MGFs of the branch SNRs. We get   
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If the original physical channels { sqpcqpqp jhhh ,,,,, += } 
are zero mean Gaussian RVs, so will be the virtual channels 
seen by kcx  and ksx , i.e., { lkslkclk jaaa ,,, ''' += } and 

{ lkslkclk jbbb ,,, ''' += }. Then both kcx  and ksx  will 
experience Rayleigh fading. The MGF is given by [11] 
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where )( ,, lklk E γγ ′=′  is the average SNR of the lth virtual 

branch with )(⋅E  denoting expectation. 

 It is important to note that, since kA  and kB  are different 

for different k, so are ka  and kb , and hence, different data 

symbols may experience different SER kMP , . 
  We now briefly describe the generation of the non-
orthogonal code as given in [8] used for the above SER 
derivation. The non-orthogonal code that fits the description 
here can be derived from an orthogonal STBC with code 
matrix G by precoding as 
        GUDC TH

hf )(= ,                                                 (17) 

where hU  is the unitary matrix that diagonalizes the channel 

covariance matrix ][ H
hh E hhR =  (for Rayleigh fading, 

0hh ==][E ), with ],...,,[ 21 Lhhh=h  being the 1×L  

vector formed by stacking { qph , }, PQL = , and fD  (a 

function of SNR and hhR ) is a diagonal matrix whose 
diagonal elements are obtained by optimum power loading 
[8, eq. (30)]. For a given hU  and fD , it can be readily 

verified that HCC  (see example given in the next section) is 
no more diagonal. Thus a non-orthogonal code is generated 
and this non-orthogonal code will have H

kk
H
kk BBAA =  

and 0BAAB =− H
kk

H
kk . 

 
IV. A NUMERICAL EXAMPLE 

Our example uses a non-orthogonal STBC that is obtained 
by precoding a rate 3/4 COD code in [5] given by 
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For demonstration, we shall use three transmit antennas and a 
single receive antenna and the constant channel correlation 
model [12]. Constant correlation can be obtained by a 
circularly symmetric three-element antenna array with close 
spacing between elements [12]. The channel covariance 
matrix is then given by 
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where ]|[| 22
lh hE

l
=σ , 3,2,1=l  and ρ  is the constant 

correlation coefficient between any pair of the three 
channels. In our simulations, we select three values for this 
coefficient, 9.0  ,6.0  ,3.0=ρ  and the ratios between 

channel variances as 6.0:1:1:: 222
321

=hhh σσσ . For the 

case of 6.0 =ρ , the unitary matrix hU  can be readily 
calculated as 
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0.895900.4442-
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hU .         (20) 

For a 20 dB average received SNR per channel and 
6.0 =ρ , the fD  can be computed as  
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while the average received SNR per channel is defined as 
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 is no more diagonal. The SER vs. 

average received SNR performance for square 16-QAM over 
correlative Rayleigh fading channels using the above data is 
presented in Fig. 1. Theoretical curves using (15) and Monte 
Carlo simulated curves are both given. It is seen that 
theoretical results are in excellent agreement with Monte 
Carlo simulated results. Note that small correlation yields 
better performance resulting from larger diversity. Then, Fig. 
2 presents the comparisons between the SER curves for the 
orthogonal code of (18) and the corresponding non-
orthogonal code for 6.0=ρ  and 9.0=ρ . Clearly, we see 
that the non-orthogonal code outperforms the orthogonal 
counterpart.  
 

V. CONCLUSION 
  We derive the SER for a non-orthogonal STBC coupled 
with QAM signaling in correlative fading channels. The non-
orthogonal code is formed by precoding an orthogonal STBC 
using optimum power loading. MIMO ML metric decoupling 
into SISO metrics is still applicable to the non-orthogonal 
code. Simulation results of SER performances for a code 
example in excellent agreements with theoretical results 
show that non-orthogonal codes outperform the orthogonal 
counterparts when MIMO channels are correlated. 

Figure 1.  SER performance for a rate 3/4 non-orthogonal STBC 
using square 16-QAM over Rayleigh fading with constant channel 
correlations. Monte Carlo simulations are marked by circles. 

 

 

Figure 2.   SER performance comparisons between the rate 3/4 orthogonal 
and corresponding non-orthogonal STBC over Raleigh fading with constant 
channel correlations. 
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